Barisan dan Deret Aritmatika

Contoh soal 1
Suku ke-4 dan suku ke-9 suatu barisan aritmatika berturut-turut adalah 110 dan 150. Suku ke-30 barisan tersebut adalah ...
A. 308
B. 318
C. 326
D. 344
E. 354
Pembahasan
Dari beberapa suku yang diketahui diperoleh persamaan yaitu :
(1) U4 = a + 3b = 110
(2) U9 = a + 8b = 150

Dengan dua persamaan di atas, kita dapat menentukan nilai suku pertama (a) dan beda (b) barisan aritmatika tersebut. Nilai a dan b dapat ditentukan dengan metode eliminasi ataupun metode substitusi. Dengan metode substitusi, diperoleh :
a + 3b = 110 → a = 110 - 3b → substitusi ke persamaan (2).
a + 8b = 150
⇒ 110 - 3b + 8b = 150
⇒ 110 + 5b = 150
⇒ 5b = 40
⇒ b = 8
Karena b = 8, maka a = 110 - 3(8) = 110 - 24 = 86.
Jadi, suku ke-30 barisan aritmatika tersebut adalah :
U30 = a + 29b
⇒ U30 = 86 + 29(8)
⇒ U30 = 86 + 232
⇒ U30 = 318 (Opsi B)

Contoh Soal 2
Dari suatu barisan aritmatika diketahui suku ke-5 adalah 22 dan suku ke-12 adalah 57. Suku ke-15 barisan ini adalah ...
A. 62
B. 68
C. 72
D. 74
E. 76
Pembahasan 
Dari soal diperoleh dua persamaan sebagai berikut :
(1) U5 = a + 4b = 22
(2) U12 = a + 11b = 57

Dengan menggunakan metode substitusi, diperoleh nilai suku pertama dan beda sebagai berikut :
a + 4b = 22 → a = 22 - 4b → substitusi ke persamaan (2).
a + 11b = 57
⇒ 22 - 4b +11b = 57
⇒ 22 + 7b = 57
⇒ 7b = 35
⇒ b = 5
Karena b = 5, maka a = 22 - 4(5) = 22 - 20 = 2.
Jadi, suku ke-15 barisan aritmatika tersebut adalah :
U15 = a + 14b
⇒ U15 = 2 + 14(5)
⇒ U15 = 2 + 70
⇒ U15 = 72 (Opsi C)

Contoh Soal 3
Suku kedua barisan aritmatika adalah 5 dan suku kelima adalah 14. Suku ke-20 barisan aritmatika tersebut adalah ...
A. 59
B. 62
C. 63
D. 65
E. 68
Pembahasan 
Dari soal diperoleh dua persamaan sebagai berikut :
(1) U2 = a + b = 5
(2) U5 = a + 4b = 14

Dengan menggunakan metode substitusi, diperoleh nilai suku pertama dan beda sebagai berikut :
a + b = 5 → a = 5 - b → substitusi ke persamaan (2).
a + 4b = 14
⇒ 5 - b + 4b = 14
⇒ 5 + 3b = 14
⇒ 3b = 9
⇒ b = 3
Karena b = 3, maka a = 5 - 3 = 2.
Jadi, suku ke-20 barisan aritmatika tersebut adalah :
U20 = a + 19b
⇒ U20 = 2 + 19(3)
⇒ U20 = 2 + 57
⇒ U20 = 59 (Opsi A)

Contoh Soal 4
Dari suatu barisan aritmatika diketahui suku keempat adalah 7 dan jumlah suku keenam dan kedelapan adalah 23. Besar suku kedua puluh adalah ...
A. 21
B. 20
C. 31
D. 41
E. 60
Pembahasan 
Dari soal diperoleh dua persamaan sebagai berikut :
(1) U4 = a + 3b = 7
(2) U6 + U8 = (a + 5b) + (a + 7b) = 2a + 12b = 23

Dengan menggunakan metode substitusi, diperoleh nilai suku pertama dan beda sebagai berikut :
a + 3b = 7 → a = 7 - 3b → substitusi ke persamaan (2).
2a + 12b = 23
⇒ 2(7 - 3b) + 12b = 23
⇒ 14 - 6b + 12b = 23
⇒ 6b = 9
⇒ b = 9/6 = 3/2

Karena b = 3/2, maka a = 7 - 3(3/2) = (14 - 9)/2 = 5/2.
Jadi, suku ke-20 barisan aritmatika tersebut adalah :
U20 = a + 19b
⇒ U20 = 5/2 + 19(3/2)
⇒ U20 = 5/2 + 57/2
⇒ U20 = 62/2 = 31 (Opsi C)

Contoh Soal 5
Diketahui U2 + U4 = 12 dan U3 + U5 = 16, maka suku ke-7 barisan itu adalah ...
A. 30
B. 28
C. 22
D. 18
E. 14

Pembahasan
Dari soal diperoleh dua persamaan sebagai berikut :
(1) U2 + U= 12
 (a + b) + (a + 3b) = 12
⇒2 a + 4b = 12
⇒ a + 2b = 6.

(2) U3 + U5 = 16
⇒ (a + 2b) + (a + 4b) = 16
⇒ 2a + 6b = 16
⇒ a + 3b = 8.

Dari dua persamaan di atas, nilai a dan b dapat dihitung dengan menggunakan metode substitusi sebagai berikut :
a + 2b = 6 → a = 6 - 2b → substitusi ke persamaan (2).
a + 3b = 8
⇒ 6 - 2b + 3b = 8
⇒ 6 + b = 8
⇒ b = 2
Karena b = 2, maka a = 6 - 2(2) = 6 - 4 = 2.
Jadi, suku pertama barisan itu adalah 2 dan suku ke-7 barisan aritmatika tersebut adalah :
U7 = a + 6b
⇒ U7 = 2 + 6(2)
⇒ U7 = 14 (Opsi E)

Sumber :
http://bahanbelajarsekolah.blogspot.com/2014/12/kumpulan-soal-dan-jawaban-barisan-dan-deret-aritmatika.html?en 

Tidak ada komentar:

Posting Komentar